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What is Integrative Cancer Biology?

= |tis the same as Cancer Systems Biology, or Systems
Biology of Cancer

What is Systems Biology? (Personal Definition, VQ)
A system of linked coordinates that slide along
Biological Scales.
SB practitioners still tend to work primarily at one
particular biological scale, but their distinctive trait is a
worry about connecting, or integrating, with scale levels
above and below.
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Misconceptions about Systems Biology

Mindless accumulation of data by some
high-throughput means

No hypothesis necessary prior to
experimentation

Large amounts of data automatically
provide answers

Can be comfortably ignored by
“Conventional Biology”
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Cancer Systems Biology: Why Bother?

“Enormous progress has been made in

understanding ....the critical cellular processes, such as
cell cycle, DNA repair, apoptosis, transcription, cell
migration, and matrix structure, [that are] so critical to our
understanding and treatment of cancer.

However, cancer is not a disease only of cells. It is a
disease of various systems and components that interact
at both a molecular and cellular level to lead to initiation
and progression of the disease.”
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Cancer Systems Biology: Why Bother?

“These interacting systems include interactions between:
genes in the cancer cells;
signal transduction pathways within a cancer cell;
cells in the tumor;
tumor and its microenvironment;

the individual and the macro-environment.”
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Cancer Systems Biology: Why Bother?

“Furthermore, the changing interactions of these ...
systems in a ... dynamic environment underscore the
iInherent complexity of the disease.

Until recently, it has been necessary to apply a
reductionist approach to cancer research, focusing on a
specific mutation, signaling pathway, or cell.

While there has been remarkable progress in
understanding each of these component parts, further
iIntegration across components or scales has been
limited primarily by the lack of technology and tools
needed to interrogate at any higher level.”
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Cancer Systems Biology: Why Bother?

“Within the past 10 years, new technologies have been
developed that have generated extensive genomic,
proteomic and other genome-wide datasets.

Other novel technologies have made possible vital
imaging, isolation of rare cells, and organotypic culturing.

Together, these developments have afforded the
possibility to expand the cancer research effort to include
an integrative systems approach.”
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Cancer Systems Biology: Why Bother?

Department of Health and Human Services

Participating Organizations
National Institutes of Health (NIH) (http://www.nih.gov/)

Components of Participating Organizations
National Cancer Institute (NCI) (http://www.cancer.gov)

Title: Collaborative Research in Integrative Cancer Biology and the Tumor
Microenvironment (UO1)

Announcement Type:

New

Program Announcement (PA) Number: PAR-09-026

Key Dates
Release/Posted Date: November 13, 2008
Opening Date: January 19, 2009 (Earliest date an application may be submitted to Grants.gov).
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Why Bother with

Computational and
Mathematical Modeling
of Cancer!

Is this equivalent to saying that we need Theory in Cancer
Biology? Yes.




Impact of theory in
science (1)

“There is nothing more practical than a good theory”
James Clerk Maxwell

Music theory
JS Bach
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Ok, theory in CB is good, but

why now, why me!?

IScience 20 December 1996, TPTeU TN TY Lm
Vol. 274. no. 5295, pp. 2039 - 2040
POI: 10.1126/science.274.5295.2039

PERSPECTIVES

iologists Put on Mathematical Glasses

orbjorn Fagerstrom, Peter Jagers, Peter Schuster, EOrs Szathmary L

“No new principle will declare itself from below a heap|

of facts”
Sir Peter Medawar l

——-————-J
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Assuming we must, how do we build
a Theory of Cancer?

Short Answer: Nobody knows. However, we can try.

OPTIONS:
m Armchair

™ Take a page from other sciences: Physics and Engineering
are recent and excellent examples of the power of
computational/mathematical modeling

AN AN
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Outline

A 4 minute course on Cancer:all you need to
know to follow the remainder of this talk

The interface between Oncology and Cancer
Systems Biology

How to practice Cancer Systems Biology

Tangible examples of Cancer Systems Biology,
including the experience in our own group (+AW)

Friday, July 31, 2009
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Macroscopic Appearance of Cancer Tissue

How we evaluate cancer disease in a patient
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Microscopic Appearance of Cancer Tissue

CBC
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Genes Expressed in Cancer Tissue

How we would like to evalua’re cancer disease

in a patient (Diagnosis and Prognosis):
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Multistage Tumor Progression: A
Current Theoretical Framework

Cellular: A / ‘/

This is great! Molecular or Genetic Profiling
is entering in the clinical practice in some

12q 17
DNA Mutation Loss LOI;S Other 0
APC Methylation g.RAS DCC p53 Alterations?

|at |nv iv
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Cancer Systems Biology:
Bridging Scales

N

Qodium

%

& i = e
O o ,')
A system‘ﬁ' linked coordinates one can slide along the
Biological Scales of Cancer:
*The Cell Scale is central to Cancer Progression
Emergent properties of scales:
*Not present in, but based on a lower scale

*Misconception: they are something mysterious
> -

Anderson and Quaranta, Nature Cancer Reviews, 2008
20
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A Cancer Systems Blology e
Theoretical Framework:

Cancer Progression is the
Outcome of a “Complex
Process” with Many
Interacting Variables

Anderson and Quaranta, 2008; Nature Reviews .

Friday, July 31, 2009

21



How does one do CSB?

@ Collect large datasets

@ Interpret them with mathematical models, from
statistical to mathematical to computational.

@ Validate the models

Friday, July 31, 2009
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Modeling with Large Datasets Improves
Predlctlon Accuracy
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Satellite Pictures Mathérﬁé’tical Prediction

= Input current weather information e.g. wind speed,
pressure, temperature, humidity etc.

Mathematical models are then solved numerically to

£
predict how this information will change in time
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How one does CSB

e Does one need to collect large datasets?
*Not to get going, but eventually yes, because
accuracy of modeling improves with more data
Example from other sciences
*Biological variability

e Why does one need models?
Large datasets cannot be easily grasped by human
mind
*Outcomes are often counterintuitive

Friday, July 31, 2009
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CSB Examples: Data Collection, Production, Modeling\

The genetic scale
*Microarrays
*microRNAs

The molecular scale
*Proteomics
*Signaling networks

The cellular scale
*Response to mE and drugs

e Altschuler
eSorger
*Qur group
The tissue scale
The organism scale

-

_ = The population scale )
4 )
Examples of modeling techniques
Statistical
*Mathematical

. J
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The Deluge of Genetic and
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Figure 4. Results of unsupervised hierarchical clustering of 130 breast tumors using intrinsically variable gene expression but excluding any
transcripts whose levels were significantly associated with genome copy numberRed indicates increased expression, and green indicates reduced
expression. An annotated version is provided as Figure S3.
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Insufficient Cell Data 1s
Particularly Acute 1in the Case of
Cellular Automata Models

Cell Life Cycle Flow Chart ECM Domain and Cell Movement
) A ey B — = — -
===
P = _’,_'L—-‘-—J:‘-'-‘:_—_ e =
956050 -
| ' T , - ’ - . R . a
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JCANCER BESEARCH 3 242000 Septeamter 1978

Tumor Heterogeneity and the Biology of Cancer Invasion and Metastasis’

Isalah J. Fidier

Cances Bpogy Program Naowpral Canow g ae Fretencs Cance Resparcn Convw Frpdorih, Maryipag 21001

Absiract

The development of a metasiasis is dependent on an
interplay Detween host faclors and intrinsic charscler-
Istics of malignant tumaor cells. The process of metastasis

colis can swrvive. Neoplasma, which sre predominantly
hetercgensous, contain a variety of subpopsiations of
cells with atering melastatic potential. Furthermore,
metlasiatic cell variants have Deen shown 10 preexist in
murine necplasms of oid and recent crigin, The possidle
existence of highly metastatic variant cells within a pri
mary bumor suggests that we no longer should consider a
necplasm 50 be & uniform entity. Efforts 1o design

eMective therapeutic sgenis and procedures
malignant tumors should be directed loward the leow Bet

fatsl metastatic subpopulations of cells.

§

of the bology of the phenomenon and . therelcre, atow the
deveiopment of new APRrOAChes 10 the tharapy of dissem.
nated dasase

We have recantly developed one such animal model for
Qualitative studes of metasiasis MiCe are gven | € Injec-
tons, i the extermal sar, of 0.05 mi of tumor cell suspen-
209, Three 10 4 woeks ater, when the lumors are estab
Iahed, the sar o amDUiaied At &3 Dase and the Mo an
ahowed 10 survive Six 10 B weoks later, the mice are illed
and examined for the presence of lymph node or visceral
matastases. In the mode!l shown in Fig. 12, 25000 vable
cells of the B16 melanoma, syngeneic 10 the CSTBL/E
mOouse, were Npecied N0 the media! surface of the external
ear. The ear and Growing tumors were amputated 3 woeks
Mer 3. INjEChion. Il the tumdr Mass ConNtned NO Meth
siatic colls, the amputabion of the sar would be curabive
Alematively, # the growng 1umor COMamed some mets-
static cells, whch invaded btood mnis and wmphatm
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S NCBI Publed

W . pubmed.gov

AR Detabases Protein

Search | ruomes

: | for cancer heterogencity

Limits | Preview/Index | Hslory | Clipboard | Delails

Display | Summary :! Show |20 :!! soerpy 2!/ Send o X

All: 134605 Raeview: 20271 4

O t )8 le cancer heterogeneity

ol Results 1 - 10 of about 1,320,000 for cancer heterogeneity. (0.22 seconds)

R —

Friday, July 31, 2009 30



Heterogeneity

® Whatis it!

® How do we quantify it!

Friday, July 31, 2009
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Wiktionary
{'wik[anr1] n.,
2 wikl-based Open
Content dictionary

o Mo Page
» Comemunty aoral

* [0 oty

heterogeneity
English

Noun

heterogenaity |Courtalse and Ucouniadio. hurd heterogeneities)
1. (wncourdabis) Diveryity
2. [courdabiel A compositon of dhverse parts

Related terms
. MW‘

anicle dBcusson

Heterogeneity

From Wikipedia, the lree encyclopedia
Hodrociod Yrom Molorogoneous |

edit this page history

WIKIPE[)I A Heterogeneous is an adiective used to describe an cbject or system consisting of multiple items having a large number of structural
The Free Encyclopedia variations. It is the opposite of homogeneous, which means that an object or system consists of multiple identical tems. Matters of a quantu

I E——
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Cell Heterogeneity

« Genetic Heterogenelty.
« Even genetically identical cells behave in different ways

- Non-Genetic Heterogeneity, sources:
= protein expression
= mMRNA expression
= Chromosomal abnormalities
= Phenotypic response to stimuli

Friday, July 31, 2009

“the variation in cell behavior is
far greater than previously
recognized.”

(Gascoigne and Taylor, 2008)

“biology at the single-cell level
sharply diverges from
expectations”

(Levsky and Singer, 2003)

Slack, et al., 2008
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High-throughput Automated Microscopy Platform
Quantify cell population Adaptability from single-cell sampling
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mEs stimulus

Mitogens (growth factors)
Nutrients (glucose, amino acids)
Other (insulin, oxygen)
Drug treatment

Phenotype traits
single cell distributions/spatial information
{ _ Proliferation (time to cell division)
Death (apoptosis)
Metabolism (glucose uptake)
Motility (velocity, angle distribution)
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Automated Single Cell Tracking

Cell Lines 6 MCF, AT1, CA1d, HT-1080, A431, CAFTD
ECM 6 Ln-332, FN, Col, bLG4, LG3, Matrigel
Conditions 4 +/- serum, +/- Matrigel

# Movies 800 4,000 hrs

# Pictures 75,000

Space Required 668 Gb Raw images + stacks + tracks

# Cells tracked 7,300

# X,y coordinates 454,000

omated Tracks

Friday, July 31, 2009



Evidence of Heterogeneity with Respect to

Motility from Single-Cell Measurements
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Quantifying Cell Heterogeneity wi

Respect to Motility

Select Microscopic ROI's
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Heterogeneity of Motility within Cell
Lines: Impact of mE Perturbations
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Trait Variability of Cancer Cells Quantified
Content Automated Microscopy of Single

Vito Quaranta®2#, Darren R. Tyson’2, Shawn F
Brandy Weidow'2, Mark P. Harris', Walter G

Methods in Enzymology, vol.4xx, Computer Methods E

41
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Theoretical Simulations of Tumor Progression:
Impact of Matrix Composition on Morphology and
Clonal Selection

Concentration

| |

Low High

Clone Aggressiveness

‘A Dead

Friday, July 31, 2009 43



Cell Motility Distribution Data
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Integration of Cancer Progression Variables in
the Hybrid Discrete-Continuous Model

9 Continuous equations

rate of change of

matrix degrading enzyme production of
— diffusion of MDE decay of MDE = MDE by Cells
a m f_/T — — Matrix
— = D V'm — Am + MN . Degrading
a f m I,j Enzymes
rate of change
of Matrix Macromolecule degredation of Matrix
MM by MDE Macro-
0 f ;7 molecules
-~ — m
ot
rate of change of oxygen o Conumsption of oxygen production of
—— diffusion of oxygen by tumour cells oxygen by MM } oxvaen
dc ' | ’ ‘ "
2
- = DV-c — YN, c + p f
0t ‘ o

¢9 Discrete tumour cell equation

n'" =n! By+n’, P +n!, P +n! P+n!_P,

i,j+1 i,j—1

with x=ih, y=jh and t=gk
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